Pro-angiogenic actors: from the uterus to peripheral arterial disease?

Nirvana SADAGHIANLOO, MD, PhD

PII: S2666-3503(22)00079-7
DOI: https://doi.org/10.1016/j.jvssci.2022.10.003
Reference: JVSSCI 91

To appear in: JVS: Vascular Science

Received Date: 28 September 2022
Revised Date: 12 October 2022
Accepted Date: 17 October 2022

Please cite this article as: N. SADAGHIANLOO, Pro-angiogenic actors: from the uterus to peripheral arterial disease?, JVS: Vascular Science (2022), doi: https://doi.org/10.1016/j.jvssci.2022.10.003.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2022 Published by Elsevier Inc. on behalf of the Society for Vascular Surgery.
Pro-angiogenic actors: from the uterus to peripheral arterial disease?

By Nirvana SADAGHIANLOO, MD, PhD

Affiliation: Department of Vascular Surgery, Centre Hospitalier Universitaire Côte d’Azur, Université Côte d’Azur, Nice, France

Address: Chirurgie Vasculaire, Hôpital Pasteur 1, 30 Voie Romaine, 06000 Nice, France

Phone: +33492032941; Fax: 0492033839; e-mail: sadaghianloo.n@chu-nice.fr

Commentary

In their study, Wolf et al. elegantly show that once again the circulatory system and the immune system are globally intertwined. By examining the function of natural killer (NK) cells in the uterus, whose potent pro-angiogenic role is known in the secretory phase of menstruation and during pregnancy, they were able to show their pro-angiogenic potential on endothelial cells through tubule formation. While in the functioning of the female body, the intercellular communication is done via pro-angiogenic cytokines, the present study unveils an unexpected molecular pathway via the secretion of Ephrin-B2, ligand of the Eph-B4 tyrosine kinase receptor present on the surface of endothelial cells. As the interactions of this signaling pathway are well known in the determination of the arterial or venous phenotype of vascular cells, this discovery opens an additional exploratory field on angiogenesis.

Furthermore, the authors were able to induce non-uterine NK cells to secrete this ligand. This gives hope for the induction of NK or other immune cells, ex vivo or in vivo on targeted territories. Subject to the applicability of these results in vivo, one can imagine the induction of this pathway locally to treat critical limb ischemia, but also other ischemic territories and organs such as the brain or the kidney.

