22-VIRC-484-AHA-VD

Epigenetically Altered Diabetic Wound Plasmacytoid Dendritic Cells Direct Wound CD4 T-cells toward a Th17 Phenotype

Christopher O. Audu,1 Sonya Wolf,2 William Melvin,2 Frank Davis,2 Sriganesh Sharma,1 Kevin Mangum,1 Emily Barrett,1 Amrita Joshi,2 Andrea T. Obi,1 Katherine A. Gallagher1, University of Michigan, Ann Arbor, MI; 2University of Michigan, Northville, MI

Background: Plasmacytoid dendritic cells (pDCs) are first responders to tissue damage and interact with wound CD4 T cells to orchestrate tissue repair. In diabetes, the role of pDCs and their subsequent influence on wound CD4 T cells and inflammation during tissue repair is unknown.

Methods: Using human diabetic wound single cell sequencing, we identified that human wound CD4 T cells are primarily the Th17 phenotype. Thus, we hypothesized that pDCs in the wounds may regulate this inflammatory T-cell phenotype, contributing to chronic inflammation. Although pDCs exist in low numbers in the wounds, we isolated wound pDCs from diabetic and control mice and examined them for inflammatory cytokine expression.

Results: We found that diabetic pDC produced significantly more IL6 (among other inflammatory cytokines) compared with controls. This is important as interleukin (IL)6 has been shown to skew CD4 T cells toward a Th17 phenotype in tissues. Upon co-culture of diabetic pDCs with naïve CD4 T cells, we confirmed excess activation of the angiotensin signaling pathway. Aneurysms by Modulating Excessive Angiotensin II Signaling

Jackie M. Zhang, Mary Migliorini, Brian Hampton, Feng Ni, Areck Ucuazian, Dudley Strickland, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD

Background: Low-density lipoprotein receptor-related protein 1 (LRP1) is known to contribute to vascular homeostasis and plays a protective role against the development of aneurysms. LRP1 has specifically been associated with abdominal aortic aneurysms in genome-wide association studies. Here we investigated the molecular mechanisms by which LR1 regulates vessel wall integrity in hopes of identifying potential therapeutic targets against aneurysm progression.

Methods: Analysis of proteomic data of the descending thoracic aorta, using mass spectrometry, identified several proteins that are dysregulated in the presence of LR1 deficiency. Using a mouse model of abdominal aortic aneurysms, we evaluated the role of LR1 in the development of aneurysms.

Results: Without LR1, mice developed spontaneous aortic and SMA aneurysms as demonstrated by increased vessel dilation, vessel medial thickening, and significant fragmentation of the elastic lamina. We found that the mice with a conditional smooth muscle cell knockout of LR1 developed spontaneous aneurysms, indicating that LR1 is required for maintaining vessel wall integrity.

Conclusions: Our findings suggest a critical role for LR1 in maintaining vascular homeostasis and preventing aneurysm formation through its regulation of the angiotensin signaling pathway. Further studies will determine the potential role of LR1 in the regulation of the angiotensin signaling pathway in aneurysm formation to better understand the complex pathophysiology and potentially develop effective therapeutic targets for this disease.


22-VIRC-536-AHA-VD

Low-density Lipoprotein Receptor-related Protein 1 Prevents Aortic and Superior Mesenteric Artery Aneurysms by Modulating Excessive Angiotensin II Signaling

Andrea T. Obi,1 Katherine A. Gallagher3. 1University of Michigan, Ann Arbor, MI; 3University of Michigan, Northville, MI

Background: Aneurysms are a leading cause of vascular morbidity and mortality. Understanding the mechanisms underlying the development of aneurysms is essential for the development of effective therapeutic strategies. We have previously shown that LR1, a key regulator of the angiotensin signaling pathway, plays a critical role in maintaining vascular homeostasis and preventing aneurysm formation.

Methods: Using a mouse model of abdominal aortic aneurysms, we evaluated the role of LR1 in the development of aneurysms by analyzing vessel wall integrity and proteomic data of the descending thoracic aorta.

Results: Without LR1, mice developed spontaneous aortic and SMA aneurysms as demonstrated by increased vessel dilation, vessel medial thickening, and significant fragmentation of the elastic lamina. We found that the mice with a conditional smooth muscle cell knockout of LR1 developed spontaneous aneurysms, indicating that LR1 is required for maintaining vessel wall integrity.

Conclusions: Our findings suggest a critical role for LR1 in maintaining vascular homeostasis and preventing aneurysm formation through its regulation of the angiotensin signaling pathway. Further studies will determine the potential role of LR1 in the regulation of the angiotensin signaling pathway in aneurysm formation to better understand the complex pathophysiology and potentially develop effective therapeutic targets for this disease.


22-VIRC-542-AHA-VD

Lack of Mitogen-activated Kinase Phosphatase-5 in Macrophages Protects Ldlr-null Mice against Atherogenesis

Xinbo Zheng,1 Zhijiang Zhao,2 Margaret Baldini,2 Cheng Zhang,2 Bo Tao,1 Lei Zhang,1 Anton M. Bennett,1 Jun Yu1,1 Yale University, New Haven, CT; 2Temple University, Philadelphia, PA

Background: Mitogen-activated protein kinases, including JNK, ERK, and p38 mitogen-activated protein kinase, are critical in regulating the expression of various proinflammatory and anti-inflammatory cytokines and chemokines. Previous work has suggested that the absence of MAP kinase phosphatase-5 (MKP-5) inhibits oxidized low-density lipoprotein (oxLDL)-induced macrophage foam cell formation without influencing the MAPK activation. The current study is to determine the role of macrophage MKP-5 in the pathogenesis of atherosclerosis and underlying mechanisms.

Methods: Nine-week-old male congenic MKP-5 deficient (MKP-5–/–) and C57Bl/6J control (WT) mice on an low-density lipoprotein (LDL) receptor knock-out (LDLR−/−) background were fed with a high-fat diet containing 125% cholesterol for 14 weeks. Global deficiency of MKP-5 attenuated atherosclerotic plaque formation without altering the lipid profile in vivo. To further elucidate the macrophage-specific effect of MKP-5 in atherogenesis, lethally irradiated LDLR−/− mice were transplanted with wild-type or MKP-5–/– bone marrow and subjected to high-fat feeding.

Results: Mice transplanted with MKP-5–/– bone marrow developed smaller atherosclerotic lesions compared by decreased lipid deposition and macrophage content compared with wild type. Lack of MKP-5 in macrophages reduced plasma levels of interleukin-1 (IL-1) and IL-6, elevated anti-inflammatory cytokines IL-1 receptor antagonist (IL-1ra) and IL-10, and IL-6. Mechanically, lack of MKP-5 in macrophages inhibited ox-LDL-induced foam cell formation through enhanced cholesterol efflux mediated by increased expression of ATP-binding cassette transporters ABCA1 and ABCB1.

Conclusions: These data suggest that the myeloid MKP-5 deficiency reduces atherosclerosis progression and foam cell formation by ameliorating cholesterol efflux and inhibiting inflammation.


22-VIRC-517-AHA-VD

Impaired Ischemic Myocutaneous Wound Revascularization and Transdermal H₂S Emissions in Diabetic Rats

Joseph Giacalone,1 Benjamin Matheson,2 Reza Shekarriz,2 Nancy Kanagy,1 Ross Clark,1 University of New Mexico Health Science Center, Albuquerque, NM; 2Exalith, LLC, Albuquerque, NM

Background: Hydrogen sulfide (H₂S) has been recognized as an important signaling molecule in cellular O₂ sensing, wound healing and angiogenesis. Studies have shown abnormal H₂S levels in diabetic patients with cardiovascular disease. Diminished H₂S signaling may play a causative role in diabetic foot wounds. The Transdermal Arterial Gasotransmitter Sensor (TAGS) device measures real-time H₂S emissions through the skin. In this work, we used the novel TAGS device to characterize transdermal H₂S emissions during diabetic and nondiabetic wound healing for the first time.

Methods: Dorsal peninsular-shaped myocutaneous ischemic flap wounds were created under anesthesia. Sprague-Dawley (SD) and Zucker Diabetic Fatty (ZDF) rats (n = 10 each) were compared. Transdermal H₂S emissions, laser speckle contrast images and planimetric photos were serially taken from the wound flap area over 14 days. After humane killing, healed flap tissue was collected for histologic (hematoxylin and eosin) analysis of panniculus carnosus (skin muscle) viability as a proxy for degree of ischemic insult.

Results: ZDF rats were significantly hyperglycemic (mean 516 mg/dL vs 201 mg/dL for SD; P = 0.02). Similar mean baseline (preoperative) H₂S emissions were observed in SD (16 ppb) and ZDF (12 ppb) rats (P = 0.25). During revascularization and healing, ZDF wounds emitted significantly less H₂S (10 ppb at day 14) as compared with SD (28 ppb at day 14, P < 0.01). ZDF wounds demonstrated impaired flap neovascularization and revascularization by laser speckle contrast images (mean 65.6 perfusion units for ZDF vs 188.0 perfusion units for SD at day 14, P < 0.01) and planimetric analysis (mean 16.6% necrosis for ZDF vs 5.3% necrosis for SD at day 14, P = 0.01).

Panniculus carnosus mean myofibril count, myofibril diameter, and layer thickness were significantly decreased (P < 0.01) in the ZDF cohort, suggesting greater tissue ischemic insult and muscle loss.

Conclusions: Diabetic rats have impaired wound H₂S production and poor revascularization. These physiologic alterations are accompanied by greater wound necrosis and histologic ischemic insult. This finding suggests H₂S abnormalities in diabetes may play a role in the pathogenesis of impaired wound healing and could represent a potential future therapeutic target for these difficult wounds.


22-VIRC-472-AHA-VD

Imatinib Promotes Reverse Cholesterol Transport and Elevates Scavenger Receptor B1

Holly C. Sucharski,1 Emma K. Dudley,1 Jordan Williams,1 Ravi Dewal,1 Kristin I. Stanford,1 Peter J. Mohler,1 Sara N. Koenig,2 The Ohio State University, Columbus, OH; 2The Ohio State University Medical Center, Columbus, OH

Background: Dyslipidemia is a cardiovascular risk factor for coronary artery disease and atherosclerosis that is characterized by elevated serum cholesterol and lipid levels. Although high-density lipoprotein-associated cholesterol (HDL-C) is associated with a reduced risk of cardiovascular events, targeted therapy to increase HDL-C levels has been unsuccessful in altering outcomes of associated atherosclerotic disease. Single nucleotide polymorphisms in SCARB1 the gene that encodes HDL receptor scavenger receptor B1 (SR-B1), are associated with dyslipidemia and atherosclerotic cardiovascular disease. We were the first to identify inherited mutations in SCARB1 that segregate with disease in a family with severe coronary artery disease and dyslipidemia, including elevated HDL. Our findings suggest that HDL function (vs HDL-C concentration) may be a promising target for cholesterol-based therapy.

Methods: Here, we performed an unbiased high throughput drug screen with 788 US Food and Drug Administration-approved compounds, using HepG2 cells to measure endogenous HDL binding. We identified five compounds that significantly increased endogenous HDL binding imatinib, trimethoprim, eszopiclone, clemastine, and mepenzolate, of which imatinib was the only compound to increase SR-BI expression. Imatinib is a tyrosine kinase inhibitor that is a chemotherapeutic agent designed to treat individuals with chronic myeloid leukemia.

Results: Limited clinical evidence suggests a reduction in total cholesterol with 400 mg/day imatinib. Additionally, imatinib treatment (150 mg/kg) in mouse models of atherosclerosis reduces total cholesterol. Yet, no data are available on the effects of imatinib on HDL and reverse cholesterol transport. We have found that imatinib promotes HDL binding and SR-BI expression in vitro. Furthermore, in wildtype C57Bl/6 mice on a high-fat, high cholesterol diet, imatinib treatment (50 mg/kg) was sufficient to decrease plasma total cholesterol, HDL-C and triglyceride levels and elevate hepatic SR-BI expression.

Conclusions: Our data support the exploration of imatinib-mediated SR-BI expression and RCT pathway to identify new therapeutic targets for dyslipidemia.