Background: Approximately 3 million Americans have ill managed lipidemia due to statin intolerance (SI) or statin-associated myopathy (SAM). Atorvastatin and simvastatin are the most prescribed statins, which are transported into the liver by SLCO1B1 and metabolized by cytochrome P450 (CYP) 3A4 and 3A5. CYP3A4*22 and CYP3A5*3 are two polymorphisms known to decrease their activity; thus, increasing the systemic daily exposure (area under the curve) and serum concentration of unmetabolized statin. In Caucasian populations the prevalence (5%-7%) of CYP3A4*22 and 90% CYP3A5*5 and effect of these polymorphisms is well characterized but not in African American populations. We hypothesize that the prevalence of SI and SAM are correlated with CYP3A5*3 polymorphisms in African American populations.

Methods: After institutional review board approval, saliva samples were collected from patients currently prescribed atorvastatin or simvastatin at The Ohio State University Medical for genotyping SLCO1B1 status was assessed to control for its confounding effect. Participants with polymorphic results were contacted to complete 6 blood draws over 15 hours for pharmacokinetic analysis. Electronic medical records were used to collect demographic information, medical histories, risk factors, and concomitant medications.

Results: A preliminary analysis of 502 participants (59% African American, 104 Caucasian, and 3 Others) shows racially different polymorphic prevalence. Reduced activity of CYP3A4 was present in 5.8% Caucasians versus 0.51% African Americans. Notably, CYP3A5*5 is inactive in 75% and reduced in 20.3% of Caucasians compared with 41.7% and 40.7% respectively in African Americans. A statistically significant increase in SI in African American women vs Caucasian women (P = 0.0032) was observed. In combined analysis, atorvastatin has a reduced odds of intolerance compared with simvastatin (odds ratio [OR], 0.463; P < 0.05). However, the odds of SAM is higher in patients with no history of cardiovascular disease (OR, 6.137; P < 0.01) and those with chronic kidney disease (OR, 12.69; P < 0.05).

Conclusions: Considering that CYP3A5 is fully active in 18.5% of the African American population compared with 6.8% Caucasian, the characteristic enzyme is of clinical significance in minority populations to better manage lipidemia, assess the safety profile of current therapeutic doses, and reduce SAM.


22-VIRC-525-AHA-VD

Mangiferin Conjugated Gold Nanoparticles Protect against the Development of Abdominal Aortic Aneurysm in an Apoe−/− Mouse Model

Chetan P. Hans, Neekun Sharma, Edward Downey Jr., Menka Khooobchandani, Kavita Katti, Kattesh V. Katti. University of Missouri, Columbia, MO

Background: There are no drugs to prevent the growth of abdominal aortic aneurysm (AAA), responsible for approximately 200,000 deaths in the world each year. There is a growing interest in natural anti-inflammatory compounds using nanotechnology-based drug delivery. Mangiferin (MCF) is one such phytochemical isolated from Mangifera indica. Conjugation of MCF on gold nanoparticles (MCF-AuNPs) enhances bioavailability, through cellular penetration, presenting new opportunities toward the design of innovative nanomedicine agents. Recently, we have demonstrated the unique applications of MCF-AuNPs as an immunomodulatory pharmacological agent in the treatment of metastatic breast and prostate cancers. Here we investigated whether MCF-AuNPs prevent the development of AAA.

Methods: ApoE−/− mice were subjected to angiotension (AngI, 1 μg/min/kg)-induced AAA. MCF-AuNPs (approximately 7 mg/mouse) were administered daily, a week before AngII and continued for 28 days (n = 8-12 per group). Prevention of the incidence of AAA were significantly attenuated with MCF-AuNPs than AngII group (P < 0.01), associated with a decrease in maximal intra-luminal diameter (P < 0.001), pulse wave velocity (P < 0.001), distensibility (P < 0.05), and radial strain (P < 0.05). Degradation of elastin (P < 0.01), proinflammatory cytokines (P < 0.01), and apoptotic cell death (P < 0.01) were significantly reduced in the aortae of MCF-AuNPs-treated ApoE−/− mice than the AngII.

22-VIRC-5470-AHA-VD

Genetic Ablation of CCDC92 Protects against Vascular Inflammation and Atherosclerosis

Wa Du,1 Dan Song,2 Lu Ren,1 Richard C. Becker,3 Yanbo Fan1

Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH: 1Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH

Background: Genome-wide association studies have uncovered specific genetic variants of the coiled-coil domain containing 92 (CCDC92) gene that are associated with coronary artery disease and type 2 diabetes. However, the biological function of CCDC92 in cardiovascular disease remains unclear. This study aims to investigate the impact of CCDC92 on atherosclerosis, a leading cause of cardiovascular disease, and dissect underlying mechanisms.

Methods: To investigate the effects of CCDC92 on atherosclerosis development in vivo we used Ccdc92 knockout (KO) mice and littermate wild-type mice (in an ApoE KO background) fed a high-cholesterol diet for 18 weeks. To provide a comprehensive characterization of cellular identity within the atherosclerotic lesion, we applied single-cell sequencing to the whole atherosclerotic aorta from Ccdc92 KO/ApoE KO and littermate control mice on high-cholesterol diet for 18 weeks. To provide a comprehensive characterization of cellular identity within the atherosclerotic lesion, we applied single-cell sequencing to the whole atherosclerotic aorta from Ccdc92 KO/ApoE KO and littermate control mice on high-cholesterol diet for 12 weeks.

Results: Ccdc92 KO significantly reduced atherosclerotic plaque by sixty percent compared with littermate control mice measured by en face analysis of atherosclerotic lesions in the aortic tree after Oil Red O staining (n = 11-12/group; P < 0.01). The single-cell sequencing analysis identified 12 cell subpopulations in the atherosclerotic aorta. Cell-specific gene set enrichment analysis further indicated that Ccdc92 deficiency had protective effects on multiple vascular cell subpopulations. Specifically, in subpopulations of endothelial cells (ECs), Ccdc92 regulates cell inflammation and fatty acid metabolism. Using human coronary artery ECs and mouse aortic EC from Ccdc92 KO and wild-type mice, we demonstrated that deletion of CCDC92 significantly inhibited proinflammatory adhesion molecules and cytokines induced by tumor necrosis factor-α. Interestingly, adenosine-mediated CCDC92 overexpression increased lipid droplet accumulation (to an average of four-fold increase) in human coronary artery ECs exposed to oleic acid overload.

Conclusions: Our findings revealed the proratherogenic effects of CCDC92 in vivo and demonstrated a critical role of CCDC92 in EC dysfunction during atherosclerosis development. These data add an important new mechanism associated with atherosclerosis and provide a potential new target for atherosclerotic disease.


22-VIRC-508-AHA-VD

African American Women with Cyp3a4/5 Polymorphisms Have Increased Statin Intolerance

Somayya J. Mohammad,1 Ethan Schwendseman,1 Patrick S. Dib,1 Michael W. Mills,1 Leon McDougle,1 Philip F. Binkley,1 Sakirma Smith.1 The Ohio State University, Columbus, OH. 2Davis Heart and Lung Institute, Columbus, OH

Background: Approximately 3 million Americans have ill managed lipidaemia due to statin intolerance (SI) or statin-associated myopathy (SAM). Atorvastatin and simvastatin are the most prescribed statins, which are transported into the liver by SLCO1B1 and metabolized by cytochrome P450 (CYP) 3A4 and 3A5. CYP3A4*22 and CYP3A5*3 are two polymorphisms known to decrease their activity; thus, increasing the systemic daily exposure (area under the curve) and serum concentration of unmetabolized statin. In Caucasian populations the prevalence (5%-7%) of CYP3A4*22 and 90% CYP3A5*5 and effect of these polymorphisms is well characterized but not in African American populations. We hypothesize that the prevalence of SI and SAM are correlated with CYP3A5*3 polymorphisms in African American populations.

Methods: After institutional review board approval, saliva samples were collected from patients currently prescribed atorvastatin or simvastatin at The Ohio State University Medical for genotyping SLCO1B1 status was assessed to control for its confounding effect. Participants with polymorphic results were contacted to complete 6 blood draws over 15 hours for pharmacokinetic analysis. Electronic medical records were used to collect demographic information, medical histories, risk factors, and concomitant medications.

Results: A preliminary analysis of 502 participants (59% African American, 104 Caucasian, and 3 Others) shows racially different polymorphic prevalence. Reduced activity of CYP3A4 was present in 5.8% Caucasians versus 0.51% African Americans. Notably, CYP3A5*5 is inactive in 75% and reduced in 20.3% of Caucasians compared with 41.7% and 40.7% respectively in African Americans. A statistically significant increase in SI in African American women vs Caucasian women (P = 0.0032) was observed. In combined analysis, atorvastatin has a reduced odds of intolerance compared with simvastatin (odds ratio [OR], 0.463; P < 0.05). However, the odds of SAM is higher in patients with no history of cardiovascular disease (OR, 6.137; P < 0.01) and those with chronic kidney disease (OR, 12.69; P < 0.05).

Conclusions: Considering that CYP3A5 is fully active in 18.5% of the African American population compared with 6.8% Caucasian, the characteristic enzyme is of clinical significance in minority populations to better manage lipidemia, assess the safety profile of current therapeutic doses, and reduce SAM.